How to load data from Delighted to PostgreSQL
Access your data on Delighted
The first step in loading your Delighted data to any data warehouse solution is accessing your data and starting extracting it.
Using the REST API that Delighted offers, you can programmatically interact with your account to access your NPS Survey Data. By doing so, you can:
1. Retrieve and list all survey responses
2. Check new submissions and any updates to existing surveys
3. List subscribed and unsubscribed people
4. List people whose emails have bounced
You can also retrieve some basic aggregated metrics for any user-defined time-period, such as the average score of your surveys or a specific trend or client.
In addition to the above, the things that you have to keep in mind when dealing with the Delighted API are:
- Rate limits. Delighted may rate limit requests in certain usage scenarios to guarantee a high quality of service to all API users. However, with normal API usage, it is unlikely to experience rate limits.
- Authentication. You can authenticate to Delighted using a private API key that is linked to your account. All API requests must be made over HTTPS and are authenticated via HTTP Basic Auth.
- Pagination. API endpoints that return a collection of items are always paginated.
Transform and prepare your Delighted data for PostgreSQL
After you have accessed your data on Delighted, you will have to transform it based on two main factors:
1. The limitations of the database that the data will be loaded onto
2. The type of analysis that you plan to perform
Each system has specific limitations on the data types and data structures that it supports. If you want to push data into Google BigQuery, you can send nested data like JSON directly.
Also, you have to choose the right data types. Again, depending on the system you will send the data and the data types that the API exposes to you, you will have to make the right choices. These choices are important because they can limit the expressivity of your queries and limit your analysts on what they can do directly out of the database.
Also, you need to consider that the reports you’ll get from Delighted are like CSV files in structure, and you need to identify somehow what and how to map a table into your database.
Each table is a collection of columns with a predefined data type such as an integer or VARCHAR. PostgreSQL, like any other SQL database, supports a wide range of different data types.
A typical strategy for loading data from Delighted to a Postgres database is to create a schema where you will map each API endpoint to a table. Each key inside the Delighted API endpoint response should be mapped to a column of that table, and you should ensure the right conversion to a Postgres compatible data type.
Load data from Delighted to PostgreSQL
For example, if an endpoint from Delighted returns a value as String, you should convert it into a VARCHAR with a predefined max size or TEXT data type. Tables can then be created on your database using the CREATE SQL statement.
Once you have defined your schema and created your tables with the proper data types, you can start loading data into your database.
The preferred way of adding larger datasets into a PostgreSQL database is by using the COPY command. COPY is copying data from a file on a file system accessible by the Postgres instance. In this way, you can insert much larger datasets into the database in less time. COPY requires physical access to a file system to load data.
Nowadays, with cloud-based, fully managed databases, getting direct access to a file system is not always possible. If this is the case and you cannot use a COPY statement, then another option is to use PREPARE and INSERT to end up with optimized and more performant INSERT queries.
Updating your Delighted data on PostgreSQL
As you will be generating more data on Delighted, you will need to update your older data on PostgreSQL. This includes new records and updates to older records that have been updated on Delighted for any reason.
You will need to periodically check Delighted for new data and repeat the previously described process while updating your currently available data if needed. Updating an already existing row on a PostgreSQL table is achieved by creating UPDATE statements.
Another issue that you need to take care of is identifying and removing duplicate records on your database. Either because Delighted does not have a mechanism to identify new and updated records or because of errors on your data pipelines, duplicate records might be introduced to your database.
Ensuring the quality of the data inserted in your database is a big and difficult issue, and PostgreSQL features like TRANSACTIONS can help tremendously. However, they do not solve the problem in the general case.
The best way to load data from Delighted to PostgreSQL
So far, we just scraped the surface of what you can do with PostgreSQL and how to load data into it. Things can get even more complicated if you want to integrate data coming from different sources.
Are you striving to achieve results right now?
Instead of writing, hosting, and maintaining a flexible data infrastructure, RudderStack can handle everything automatically for you.
RudderStack, with one click, integrates with sources or services, creates analytics-ready data, and syncs your Delighted to PostgreSQL right away.